# Event Analysis Model API
As for the call method, please refer to the call method description in Open API
You can read the event analysis in the user manual to understand the usage scenario.
# Event Analysis Query
Interface URL
/open/event-analyze?token=xxx
Request method
POST
Content-Type
application/json
Request Query parameter
Parameter name | Sample value | Parameter type | Is required | Parameter description |
---|---|---|---|---|
token | xxx | String | Yes | token |
# Request Body Parameter
{
"eventView": {
"comparedByTime": true,
"comparedStartTime": "2021-12-14 00:00:00",
"comparedEndTime": "2021-12-20 23:59:59",
"comparedRecentDay": "8-14",
"startTime": "2021-12-21 00:00:00",
"endTime": "2021-12-27 23:59:59",
"recentDay": "1-7",
"relation": "and",
"timeParticleSize": "day",
"eventSplit": {
"event": {
"eventDesc": "login",
"eventName": "login"
},
"groupByProp": {
"columnDesc": "browser",
"columnName": "browser",
"propertyRange": "",
"tableType": "event"
}
},
"groupBy": [{
"columnDesc": "brand",
"columnName": "brand",
"propertyRange": "",
"specifiedClusterDate": "2021-12-28",
"tableType": "event"
}],
"filts": [{
"columnDesc": "brand",
"columnName": "brand",
"comparator": "equal",
"filterType": "SIMPLE",
"ftv": ["apple", "xiaomi"],
"specifiedClusterDate": "2021-12-28",
"tableType": "event",
"timeUnit": ""
}],
"queryFeature": {
"approximateOn": true,
"globalQueryOn": false
}
},
"events": [{
"analysis": "TOTAL_TIMES",
"analysisParams": "",
"eventName": "login",
"eventNameDisplay": "total times of loggin",
"eventSplitIndexes": [0],
"eventUuid": "7FonAy-G",
"filts": [],
"quota": "",
"relation": "and",
"type": "normal"
}, {
"analysis": "TRIG_USER_NUM",
"analysisParams": "",
"eventName": "activity_attend",
"eventNameDisplay": "Number of Trigger Users Attending Activities",
"eventUuid": "K9A5NDAz",
"filts": [{
"columnDesc": "app version",
"columnName": "app_version",
"comparator": "notNull",
"filterType": "SIMPLE",
"ftv": [],
"specifiedClusterDate": "2021-12-28",
"tableType": "event",
"timeUnit": ""
}],
"quota": "",
"quotaEntities": [{
"index": 0,
"taIdMeasure": {
"columnDesc": "only user ID",
"columnName": "#user_id",
"tableType": "event"
}
}],
"relation": "and",
"type": "normal"
}, {
"customEvent": "logout.PER_CAPITA_TIMES",
"customFilters": [],
"eventName": "custom indicator",
"eventNameDisplay": "",
"eventSplitIndexes": [],
"eventUuid": "gxqT19xz",
"filts": [],
"format": "float",
"quota": "",
"quotaEntities": [{
"index": 0,
"taIdMeasure": {
"columnDesc": "email",
"columnName": "email",
"tableType": "user"
}
}],
"quotaTimeRanges": [{
"index": 0,
"params": ["1"],
"type": "THIS_WEEK"
}],
"relation": "and",
"type": "customized"
}],
"projectId": 377,
"useSameResultKey": false,
"useCache": true,
"limit": 1000,
"timeoutSeconds": 10
}
::: TIP
Parameters provided can be divided into multiple categories: basic parameters (mandatory); time comparison parameters, event splitting parameters; grouping parameters, global filtering parameters, query configuration parameters (optional); Common analysis metric or self-defined analysis metric should be chosen.
:::
# Request Parameter Description
Parameter name | Sample value | Parameter type | Is required | Parameter description |
---|---|---|---|---|
eventView | - | Object | Yes | Metrics common attribute part. |
∟ comparedByTime | true | Boolean | No | Whether to compare the time, TRUE: Yes, FALSE: No |
∟ comparedStartTime | 2021-12-14 00:00:00 | String | No | Contrast time start time (format: yyyy-MM-dd HH: mm: ss), the comparison time is valid when the relative time is empty |
∟ comparedEndTime | 2021-12-20 23:59:59 | String | No | Compare time end time (format: yyyy-MM-dd HH: mm: ss), valid when the comparison time is empty relative to time |
∟ comparedRecentDay | 8-14 | String | No | Comparison time relative time (when comparedByTime is TRUE, this item cannot be empty both with the start time and end time of the comparison time) |
∟ startTime | 2021-12-21 00:00:00 | String | No | Start time (format: yyyy-MM-dd HH: mm: ss), valid when the relative time is empty |
∟ endTime | 2021-12-27 23:59:59 | String | No | End time (format: yyyy-MM-dd HH: mm: ss), valid when the relative time is empty |
∟ recentDay | 1-7 | String | No | Relative time (this item cannot be empty both with the start time and the end time) |
∟ relation | and | String | No | Logical relationship, and: logical and, or: logical or |
∟ timeParticleSize | day | String | Yes | Unit of the time period taken for analysis minute:based on one minute minute5: based on five minutes(supported since v3.5) minute10: based on ten minutes (supported since v3.5) hour: based on hours day: based on days week: based on weeks month: based on months total: total |
∟ eventSplit | - | Object | No | Event splitting information |
∟ event | - | Object | Yes | Event splitting event information |
∟ eventDesc | Login | String | No | Display name of event splitting metric |
∟ eventName | login | String | Yes | Event name of event splitting metric |
∟ groupByProp | - | Object | Yes | Event splitting metric grouping information |
∟ columnDesc | Browser | String | No | Display name of event splitting grouping field |
∟ columnName | browser | String | Yes | Filed name of event splitting grouping field |
∟ propertyRange | String | No | Event splitting grouping property interval by numeric | |
∟ tableType | event | String | Yes | Table type enumeration |
∟ groupBy | - | List | No | Grouping property part, zero or more |
∟ columnName | brand | String | Yes | Field name |
∟ columnDesc | Brand | String | No | Field display name |
∟ propertyRange | String | No | Self-defined property interval | |
∟ propertyRangeType | String | No | Property interval type, which can be used as self-defined bucketing conditions when grouping numeric properties def: default interval, divided by the system automatically discrete: each value is an independent group user_defined: defined by the user; the self-defined content is set in propertyRange | |
∟ specifiedClusterDate | 2021-12-28 | String | No | Historical tag version of specified date |
∟ tableType | event | String | Yes | Table type enumeration |
∟ filts | - | List | No | Global filters parts |
∟ columnDesc | Brand | String | No | Field display name |
∟ columnName | brand | String | Yes | Field name |
∟ comparator | equal | String | Yes | Reference: filtering expression of model query API |
∟ filterType | SIMPLE | String | No | Filtering mode, SIMPLE: simple, COMPOUND: compound, default as SIMPLE |
∟ ftv | ["Apple", "Xiaomi"] | List | No | Property comparative with bound literial |
∟ specifiedClusterDate | 2021-12-28 | String | No | Historical tag version of specified date |
∟ tableType | event | String | Yes | Table type enumeration |
∟ timeUnit | String | No | Property filter unit, only valid to relativeEvent*:day,hour,minute | |
∟ queryFeature | - | Object | No | Query configuration |
∟ approximateOn | true | Boolean | No | Enable approximate calculation or not |
events | - | List | Yes | Event metric list |
∟ analysis | TRIG_USER_NUM | String | No | As for detailed information about the analysis perspective and aggregation operation, please refer to Aggregate type enumeration |
∟ analysisParams | String | No | Analysis perspective parameter (could not be empty when the analysis is PERCENTILE, value range: 1-100,representing the percentile) | |
∟ eventName | activity_attend | String | Yes | Event name, special, anyEvent can be used to represent any event |
∟ eventNameDisplay | Number of trigger users participating in the event | String | No | Event display name |
∟ metricName | retention_rate_1 | String | No | Metric-based query , representing fixed analysis caliber. During metric-based queries, events.eventName can be set as the self-defined metric |
∟ eventUuid | K9A5NDAz | String | No | Event UUID, used as the unique identifier of the event |
∟ filts | - | List | No | Condition list |
∟ columnDesc | App version | String | No | Field display name |
∟ columnName | app_version | String | Yes | Field name |
∟ comparator | notNull | String | Yes | Reference: filtering expression of model query API |
∟ filterType | SIMPLE | String | No | Filtering mode, SIMPLE:simple, COMPOUND:compound, default as SIMPLE |
∟ ftv | [] | List | No | Property comparative with bound literial |
∟ specifiedClusterDate | 2021-12-28 | String | No | Historical tag version of specified date |
∟ tableType | event | String | Yes | Table type enumeration |
∟ timeUnit | String | No | Unit of the time taken for filtering | |
∟ quota | String | No | Metric property (combined with analysis, indicating the property involved and the analysis perspective) | |
∟ quotaDesc | String | No | Display name of metric property | |
∟ quotaEntities | - | List | Entity list corresponding to analysis event metric | |
∟ index | 0 | Integer | Yes | Entity index corresponding to analysis event metric |
∟ taIdMeasure | - | Object | Query ID system configuration | |
∟ columnDesc | User unique ID | String | No | Field display name |
∟ columnName | #user_id | String | Yes | Field name |
∟ tableType | event | String | Yes | Table type enumeration |
∟ relation | and | String | No | logical relation,and:logic and,or:logic or |
∟ type | normal | String | Yes | normal:normal analysis customized:self-defined formula |
∟ customEvent | logout.PER_CAPITA_TIMES | String | No | Formula expression, involving the addition, subtraction, multiplication and division of analysis items or numeric constant. There are two forms of analysis items: eventName.columnName.analysis or eventName.analysis。 The method of fixed prefix_metric name should be adopted when the formula contains analysis metric, for example: $metric.metricName/eventName.columnName.analysis or $metric.metricName1/$metric.metricName2 |
∟ customFilters | [] | List | No | List of formula expression filters |
∟ eventName | Custom indicators | String | Yes | The eventName the metric based on |
∟ eventNameDisplay | String | No | Self-defined metric display name | |
∟ eventSplitIndexes | [] | List | No | Items participating in event splitting |
∟ format | float | String | No | Display the options of data float:two decimal places, float3: three decimal places, float4: four decimal places, percent: percentage |
∟ quota | String | No | Metric property (combined with analysis, indicating the property involved and the analysis perspective) | |
∟ quotaDesc | String | No | Display name of metric property | |
∟ quotaEntities | - | List | No | List of entities corresponding to analysis event metric |
∟ index | 0 | Integer | Yes | Entity index corresponding to analysis event metric |
∟ taIdMeasure | - | Object | Yes | Query ID system configuration |
∟ columnDesc | Mailbox | String | No | Field display name |
∟ columnName | email | String | Yes | Field name |
∟ tableType | user | String | Yes | Table type enumeration |
∟ quotaTimeRanges | [] | List | No | List of metric time range |
∟ index | 0 | Integer | Yes | Index of time range |
∟ params | ["1"] | List | No | Time range parameters, when events.quotaTimeRanges.type is TIME_RANGE, the params is ["-3", "4"], referring to the next three or four days |
∟ type | THIS_WEEK | String | Yes | Type of time range LAST_DAYS: last days, RECENT_DAYS: recent days, THIS_WEEK:this week, THIS_MONTH:this month, TIME_RANGE: time range |
∟ relation | and | String | No | Logical relation,and:logic and,or:logic or |
∟ type | customized | String | Yes | normal:normal analysis customized:self-defined formula |
projectId | 377 | Integer | Yes | Project numeric identity |
useSameResultKey | false | Boolean | No | Whether the same event name should be used when the event names are the same true: use the same event name false:add prefix number when the event names are the same |
useCache | true | Boolean | No | Use cache , optional parameter, default value: true |
limit | 1000 | Integer | No | Upper limit of the group number of each analysis object, optional parameter, default value: 1000, maximum value: 10000 |
timeoutSeconds | 10 | Integer | No | Request timeout parameter. Query task should be cancelled after the request times out. |
# Successful Response Example
{
"data": {
"result_generate_time": "2021-12-30 11:15:41",
"union_groups": [
[
"Safari",
"apple"
],
[
"Firefox",
"xiaomi"
],
[
"WeChat built-in browser",
"apple"
],
[
"total",
"apple"
],
[
"total",
"xiaomi"
]
],
"x": [
"2021-12-23",
"2021-12-24",
"2021-12-25",
"2021-12-26",
"2021-12-27",
"2021-12-28",
"2021-12-29"
],
"x_compared": [
"2021-12-16",
"2021-12-17",
"2021-12-18",
"2021-12-19",
"2021-12-20",
"2021-12-21",
"2021-12-22"
],
"y": [
{
"login.TOTAL_TIMES": [
{
"group_cols": [
"Safari",
"apple"
],
"group_num": 3,
"values": [
"0",
"0",
"0",
"0",
"0",
"0",
"0"
],
"values_compared": [
"447",
"980",
"1584",
"321",
"285",
"74",
"0"
]
},
{
"group_cols": [
"Firefox",
"xiaomi"
],
"group_num": 3,
"values": [
"0",
"0",
"0",
"0",
"0",
"0",
"0"
],
"values_compared": [
"291",
"818",
"1128",
"272",
"219",
"58",
"0"
]
},
{
"group_cols": [
"WeChat built-in browser",
"apple"
],
"group_num": 3,
"values": [
"0",
"0",
"0",
"0",
"0",
"0",
"0"
],
"values_compared": [
"231",
"500",
"764",
"214",
"155",
"35",
"0"
]
}
]
},
{
"activity_attend.TRIG_USER_NUM": [
{
"group_cols": [
"total",
"apple"
],
"group_num": 2,
"values": [
"0",
"0",
"0",
"0",
"0",
"0",
"0"
],
"values_compared": [
"640",
"811",
"1251",
"1253",
"720",
"113",
"0"
]
},
{
"group_cols": [
"total",
"xiaomi"
],
"group_num": 2,
"values": [
"0",
"0",
"0",
"0",
"0",
"0",
"0"
],
"values_compared": [
"277",
"439",
"600",
"666",
"364",
"59",
"0"
]
}
]
},
{
"Custom Indicators": [
{
"group_cols": [
"total",
"apple"
],
"group_num": 2,
"values": [
"1",
"1",
"1",
"1",
"0",
"0",
"0"
],
"values_compared": [
"1.01",
"1.01",
"1.01",
"1.01",
"1",
"1",
"1"
]
},
{
"group_cols": [
"total",
"xiaomi"
],
"group_num": 2,
"values": [
"1",
"1",
"1",
"1",
"0",
"0",
"0"
],
"values_compared": [
"1.01",
"1.01",
"1.01",
"1.01",
"1",
"1",
"1"
]
}
]
}
]
},
"return_code": 0,
"return_message": "success"
}
# Response Parameter Description
Parameter name | Sample value | Parameter type | Parameter description |
---|---|---|---|
data | - | Object | Return results |
∟ result_generate_time | 2021/12/29 12:00 | String | Query result generation time |
∟ union_groups | ["Apple"] | List | All Grouping Set |
∟ x | ["2021-12-23"] | List | X-axile time |
∟ x_compared | ["2021-12-16"] | List | X-axile comparison time |
∟ y | - | List | Y-axile data list |
∟ {metricname} | - | List | Y-axile metric information list |
∟ group_cols | ["Apple"] | List | Y-axile metric group |
∟ group_num | 3 | Integer | Y-axile metric group number |
∟ values | ["0"] | List | Y-axile metric value |
∟ values_compared | ["447"] | List | Y-axile time comparison metric value |
return_code | 0 | Integer | Return code |
return_message | success | String | Return message |
Error Response Example
{
"return_code": -1008,
"return_message": "parameter (token) is empty"
}
Parameter name | Sample value | Parameter type | Parameter description |
---|---|---|---|
return_code | -1008 | Integer | Return code |
return_message | The parameter (token) is empty | String | Return information |
Curl Example
curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{"projectId": 377,"useSameResultKey": false,"useCache": true,"limit": 1000,"eventView": {"comparedByTime": true,"comparedStartTime": "2021-12-14 00:00:00","comparedEndTime": "2021-12-20 23:59:59","comparedRecentDay": "8-14","startTime": "2021-12-21 00:00:00","endTime": "2021-12-27 23:59:59","recentDay": "1-7","relation": "and","timeParticleSize": "day","eventSplit": {"event": {"eventDesc": "login","eventName": "login"},"groupByProp": {"columnDesc": "browser","columnName": "browser","propertyRange": "","tableType": "event"}},"groupBy": [{"columnDesc": "brand","columnName": "brand","propertyRange": "","specifiedClusterDate": "2021-12-28","tableType": "event"}],"filts": [{"columnDesc": "brand","columnName": "brand","comparator": "equal","filterType": "SIMPLE","ftv": ["Apple", "Xiaomi"],"specifiedClusterDate": "2021-12-28","tableType": "event","timeUnit": ""}],"queryFeature": {"approximateOn": true,"globalQueryOn": false}},"events": [{"analysis": "TOTAL_TIMES","analysisParams": "","eventName": "login","eventNameDisplay": "total login times","eventSplitIndexes": [0],"eventUuid": "7FonAy-G","filts": [],"quota": "","relation": "and","type": "normal"}, {"analysis": "TRIG_USER_NUM","analysisParams": "","eventName": "activity_attend","eventNameDisplay": "number of triggering users participating in activities","eventUuid": "K9A5NDAz","filts": [{"columnDesc": "app version","columnName": "app_version","comparator": "notNull","filterType": "SIMPLE","ftv": [],"specifiedClusterDate": "2021-12-28","tableType": "event","timeUnit": ""}],"quota": "","quotaEntities": [{"index": 0,"taIdMeasure": {"columnDesc": "unique ID of the user","columnName": "#user_id","tableType": "event"}}],"relation": "and","type": "normal"}, {"customEvent": "logout.PER_CAPITA_TIMES","customFilters": [],"eventName": "self-defined metric","eventNameDisplay": "","eventSplitIndexes": [],"eventUuid": "gxqT19xz","filts": [],"format": "float","quota": "","quotaEntities": [{"index": 0,"taIdMeasure": {"columnDesc": "e-mail","columnName": "email","tableType": "user"}}],"quotaTimeRanges": [{"index": 0,"params": ["1"],"type": "THIS_WEEK"}],"relation": "and","type": "customized"}]}' 'http://ta2:8992/open/event-analyze?token=bTOzKiTIozG4e19FgXphcA8dDV3DIY8RwdHTO7aSnBsRqSNaIk19BnBMecJDWibD'
# Event Analysis Full Data Download
Interface URL
/open/streaming-download/event-analyze?token=xxx
Request method
POST
Content-Type
application/json
Request Query Parameter
Parameter name | Sample value | Parameter type | Mandatory or not | Parameter description |
---|---|---|---|---|
token | xxx | String | Yes | Query key |
# Request Body Parameter
{
"eventView": {
"endTime": "2022-03-07 16:32:12",
"filts": [{
"columnDesc": "class",
"columnName": "level",
"comparator": "greater",
"filterType": "SIMPLE",
"ftv": ["1"],
"specifiedClusterDate": "2022-03-08",
"tableType": "event",
"timeUnit": ""
}],
"groupBy": [{
"columnDesc": "channel",
"columnName": "channel",
"propertyRange": "",
"specifiedClusterDate": "2022-03-08",
"tableType": "event"
}],
"recentDay": "1-7",
"relation": "and",
"startTime": "2022-03-01 16:32:12",
"timeParticleSize": "day"
},
"events": [{
"analysis": "TOTAL_TIMES",
"analysisParams": "",
"eventName": "LogOut",
"eventNameDisplay": "total LogOut times",
"eventUuid": "QgfCSkCw",
"filts": [],
"quota": "",
"relation": "and",
"type": "normal"
}],
"projectId": 319
}
# Request Parameter Description
Parameter name | Sample value | Parameter type | Mandatory or not | Parameter description |
---|---|---|---|---|
projectId | 0 | String | Yes | Project numeric identity |
eventView | - | Object | Yes | Same parameters as Event Analysis Query interface |
events | List | Yes | Same parameters as Event Analysis Query interface |
::: Tips
The request parameters could be exported from the event analysis screen of the TE system
:::
# Response
Same with the full data download of the event analysis of the TE system
# Event Analysis User List
Interface URL
/open/event-user-list?token=xxx
Request method
POST
Content-Type
application/json
Request Query parameter
Parameter name | Sample value | Parameter type | Is required | Parameter description |
---|---|---|---|---|
token | xxx | String | Yes | token |
# Request Body Parameter
{
"projectId": 0,
"eventView": {
"startTime": "2019-11-24 00:00:00",
"endTime": "2019-11-26 00:00:00",
"recentDay": "1-3",
"timeParticleSize": "day",
"groupBy": [
{
"columnName": "#city",
"tableType": "event"
}
]
},
"events": [
{
"analysis": "TRIG_USER_NUM",
"eventName": "consume_item",
"quota": "#vp@dailyTask",
"relation": "and",
"type": "normal",
"filts": [
{
"columnName": "user_level",
"comparator": "equal",
"ftv": [
"5"
],
"tableType": "user"
}
],
}
],
"sliceDate": "2019-11-26",
"eventIndex": 0,
"sliceGroupVal": [
"Beijing"
],
"timeoutSeconds": 10
}
# Request Parameter Description
Parameter name | Sample value | Parameter type | Is required | Parameter description |
---|---|---|---|---|
projectId | 0 | String | Yes | Project numeric identity |
eventView | - | Object | Yes | Same parameters as Event Analysis Query interface |
events | List | Yes | Same parameters as Event Analysis Query interface | |
sliceDate | "2019-11-26" | String | No | Go into detail by which date |
sliceGroupVal | ["Beijing"] | List | Yes | Go into detail by which group |
eventIndex | 0 | int | Yes | Go into detail by which number of metrics, starting from 0 |
timeoutSeconds | 10 | Integer | No | Request timed out parameter, timeout cancels query task |
# Successful Response Example
{
"data": {
"datalist": [
{
"#account_id": "e78107482",
"#distinct_id": "e145056682",
"user_level": 5,
"register_time": "2019-11-26 14:36:13",
"diamond_num": 1006,
"latest_login_time": "2019-11-26 15:45:16",
"channel": "app store",
"#user_id": 33474682
},
{
"#account_id": "d7819213",
"#distinct_id": "d14521393",
"user_level": 5,
"register_time": "2019-11-26 23:25:14",
"diamond_num": 858,
"first_recharge_time": "2019-11-26 23:29:56",
"latest_login_time": "2019-11-26 23:32:48",
"channel": "app store",
"#user_id": 3351093
}
],
"columMeta": {
"#account_id": "account ID",
"#distinct_id": "visitor ID",
"user_level": "user level",
"register_time": "register time",
"diamond_num": "diamond number",
"first_recharge_time": "first recharge time",
"latest_login_time": "lastest login time",
"channel": "channel"
}
},
"return_code": 0,
"return_message": "success"
}
# Response parameter description
Parameter name | Sample value | Parameter type | Parameter description |
---|---|---|---|
return_code | 0 | Integer | Return code |
return_message | success | String | Return information |
data | - | Object | Return result |
∟ datalist | - | List | User Information |
∟ columMeta | - | Map | Field meaning mapping |
Error Response Example
{
"return_code": -1008,
"return_message": "The parameter (token) is empty"
}
Parameter name | Sample value | Parameter type | Parameter description |
---|---|---|---|
return_code | -1008 | Integer | Return code |
return_message | The parameter (token) is empty | String | Return information |
# Download of Event Analysis User List
Interface URL
/open/streaming-download/event-user-list?token=xxx
Request method
POST
Content-Type
application/json
Request Query parameters
Parameter name | Sample value | Parameter type | Mandatory or not | Parameter description |
---|---|---|---|---|
token | xxx | String | Yes | Query key |
# Request Body Parameters
{
"eventView": {
"comparedByTime": false,
"comparedRecentDay": "",
"endTime": "2022-03-07 16:32:12",
"filts": [{
"columnDesc": "class",
"columnName": "level",
"comparator": "greater",
"filterType": "SIMPLE",
"ftv": ["1"],
"specifiedClusterDate": "2022-03-08",
"tableType": "event",
"timeUnit": ""
}],
"groupBy": [{
"columnDesc": "channel",
"columnName": "channel",
"propertyRange": "",
"specifiedClusterDate": "2022-03-08",
"tableType": "event"
}],
"recentDay": "1-7",
"relation": "and",
"startTime": "2022-03-01 16:32:12",
"timeParticleSize": "day"
},
"events": [{
"analysis": "TRIG_USER_NUM",
"analysisParams": "",
"eventName": "LogOut",
"eventNameDisplay": "number of AlertA triggered of LogOut",
"eventUuid": "QgfCSkCw",
"filts": [],
"quota": "",
"quotaEntities": [{
"index": 0,
"taIdMeasure": {
"columnDesc": "Unique ID of the user",
"columnName": "#user_id",
"tableType": "event"
}
}],
"relation": "and",
"type": "normal"
}],
"projectId": 319,
"sliceDate": "2022-03-01",
"eventIndex": 0,
"sliceGroupVal": ["AppStore"],
"selectedColumns": ["#account_id", "#distinct_id", "accountid"]
}
# Request Parameter Description
Parameter name | Sample value | Parameter type | Mandatory or not | Parameter description |
---|---|---|---|---|
projectId | 0 | String | Yes | Project numeric identity |
eventView | - | Object | Yes | Same parameters as Event Analysis Query interface |
events | List | Yes | Same parameters as Event Analysis Query interface | |
sliceDate | "2019-11-26" | String | No | Go into detail by which date |
sliceGroupVal | ["Beijing City"] | List | Yes | Go into detail by which group |
eventIndex | 0 | int | Yes | Go into detail by which number of metrics, starting from 0 |
selectedColumns | ["#account_id"] | List | Yes | The columns to be downloaded |
::: Tips
The main structure of request parameters could be exported from the event analysis screen of the TE system, while such parameters as sliceDate, eventIndex, eventDate, sliceGroupVal, and selectedColumns could be added. Detailed parameter values could be obtained from the screen interface.
:::
# Response
Same with the download of the event analysis user list of the TE system
# Generic enumeration for event analysis
# Aggregate type enumeration for event analysis
Value | Description | Whether properties are required |
---|---|---|
TOTAL_TIMES | Total number | No |
TRIG_USER_NUM | Number of users triggered | No |
PER_CAPITA_TIMES | Number of times per capita | No |
SUM | Sum of values | Yes |
AVG | Numerical average | Yes |
FOR _ CAPITA _ NUM | Per capita | Yes |
MAX | Maximum value | Yes |
MIN | Numerical minimum | Yes |
DISTINCT | Deduplicate number | Yes |
TRUE | True number | Yes |
FALSE | False number | Yes |
IS_NOT_EMPTY | Not an empty number | Yes |
IS_EMPTY | Null number | Yes |
ARRAY_DISTINCT | List overall deduplicate number | Yes |
ARRAY_SET_DISTINCT | Element collection deduplicate number | Yes |
ARRAY_ITEM_DISTINCT | List element deduplicate number | Yes |
MEDIAN | Median | Yes |
PERCENTILE | Percepentiles | Yes |